Objective 1: Nutritional ecology including diet optimization, salivary gland characterization, gut symbionts and colony procedures

United States Department of Agriculture

National Institute of Food and Agriculture 1

Specialty Crop Research Initiative Grant #2011-01413-30937

PENNSTATE

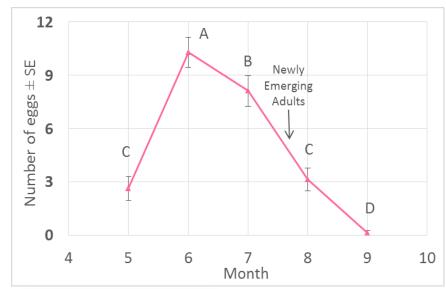
Collaborating Institutions

Summary of Work to Date

- Nutritional profile dynamics
 - Nik Wiman and Victoria Skillman (Oregon State), Jana Lee (USDA)
- Diet suitability
 - Angel Acebes and Chris Bergh (Virginia Tech), Tracy Leskey (USDA)
- Salivary gland characterization
 - Gary Felton and Michelle Peiffer (Penn State University)
- Gut microbe symbiosis
 - Chris Taylor, Galen Dively (University of Maryland)
- Colony rearing/ diapause
 - Dively lab (University of Maryland)

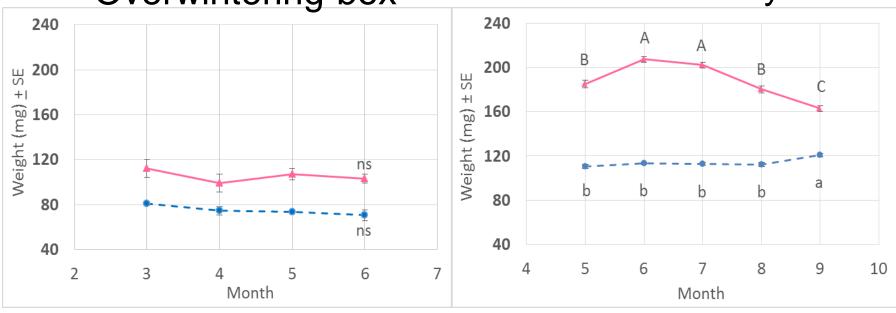
Nutrient profiles of BMSB

- Understanding the nutrient profile of BMSB in the wild can potentially pinpoint vulnerable periods, and predict how plant resources are utilized.
- No information on nutrient profiles of naturallyoccurring adult BMSB in North America.
- Objective: Nutrient dynamics of wild BMSB
 - 1. As they emerge from overwintering (March-June)
 - 2. Through the field season (May-Sept)

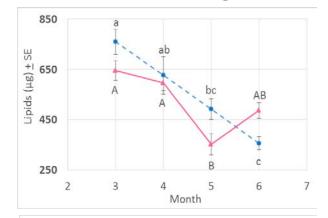

BMSB Collections

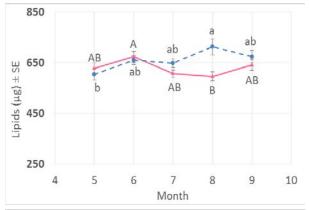
- Overwintering: Adults collected as they emerged from boxes Mar-June
- Season: Beat holly trees from 5 locations in Oregon May-Sept
- Measurements
 - Weight
 - Prothorax width
 - Ovary/spermathecal
 - Nutrients (lipid, glycogen, sugars)

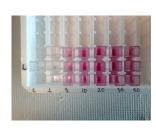
Eggs


- Season: Among ♀
 from holly, peak egg
 load was observed
 in June

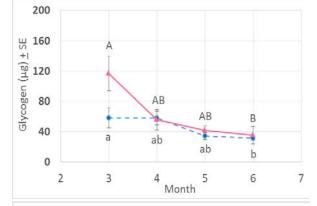
Weight

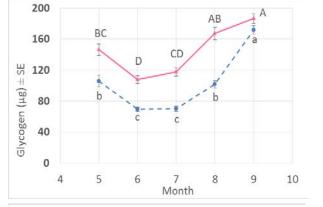

Overwintering-box Season-holly

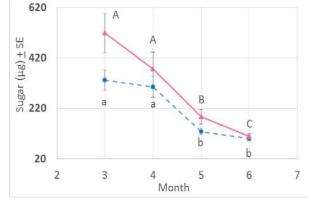


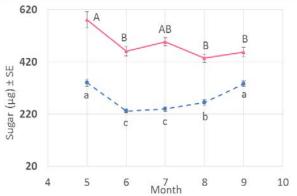

- For each sex and collection type (overwintering, holly), comparisons were made between months.
- \supseteq (red) from holly weighed more in early summer
- 3 (blue) weigh more in September

Overwintering-box Season-holly


Lipids




Glycogen



Sugars

Summary

- Adults emerging from overwintering exhibit a steady decline in lipids, glycogen, and sugars as they emerged later in the season. This suggests that overwintering for longer periods of time uses up more nutrient reserves.
- Adults that emerged from overwintering in May-June had numerically lower weights and nutrient reserves than their counterparts collected from holly at the same time. This suggests that feeding on host plants may have replenished their reserves.

Summary of Work to Date

- Nutritional profile dynamics
 - Nik Wiman and Victoria Skillman (Oregon State), Jana Lee (USDA)
- Diet suitability
 - Angel Acebes and Chris Bergh (Virginia Tech), Tracy Leskey (USDA)
- Salivary gland characterization
 - Gary Felton and Michelle Peiffer (Penn State University)
- Gut microbe symbiosis
 - Chris Taylor, Galen Dively (University of Maryland)
- Colony rearing/ diapause
 - Dively lab (University of Maryland)

Determine the relative suitability of single and mixed diets of selected wild and fruit tree hosts on BMSB development and survivorship

Tree fruit hosts:

Apple Peach

Wild hosts:

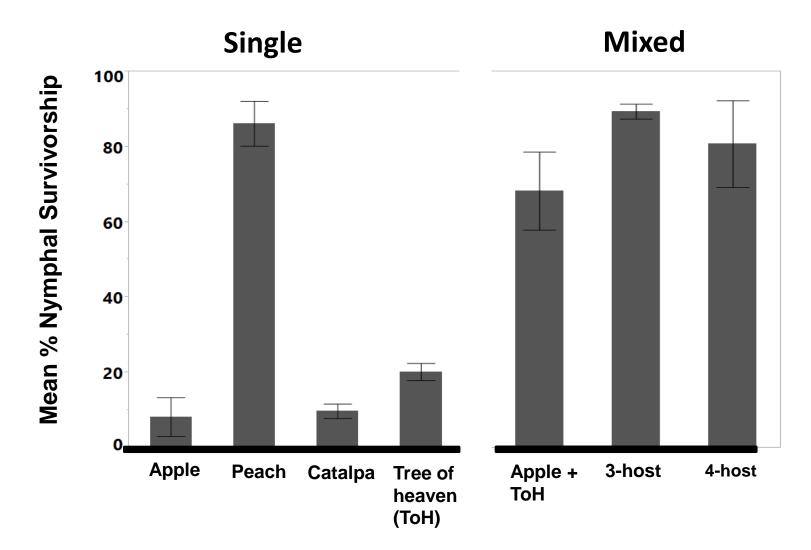
Tree of heaven

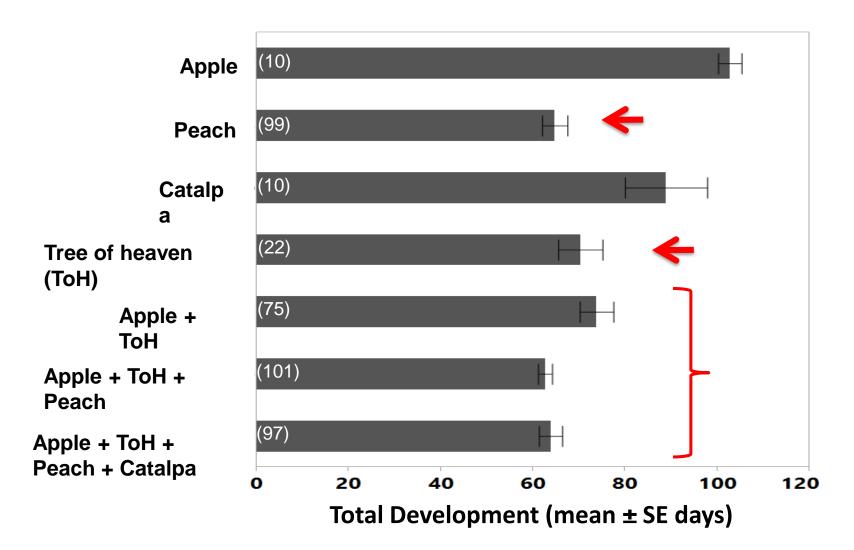
Single

Apple

Mixed

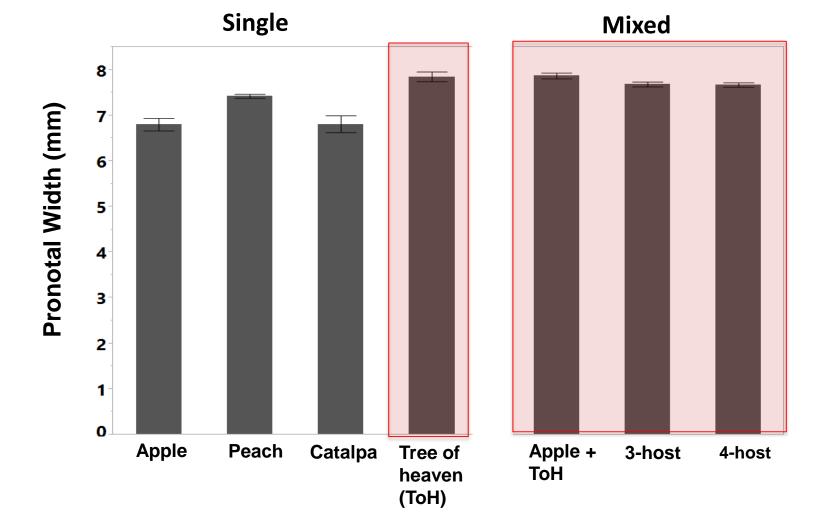
Methods


- 1 egg mass/treatment (replicated 4x)
- Checked daily until adult eclosion
- Field-collected plant materials replaced regularly
- Measured:
 - Survivorship
 - > Development time
 - Adult live body weight and size (pronotal width)
 - Sugar, lipid and protein contents of the adults

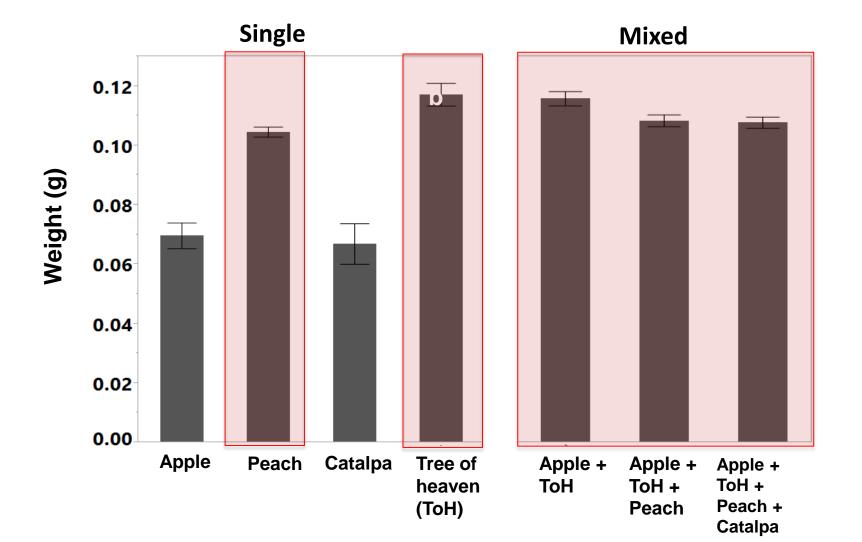

Results

- Mixed diets proved to be optimal for nymphal survivorship
- ◆ Peach is a highly suitable single host

Results: Developmental Time


- ◆ BMSB developed faster on mixed diets and single diets of peach and ToH
- Longer development on single diets of apple and catalpa

Results: Size


 Adults reared on mixed diets and ToH (single diet) were larger

Results: Weight

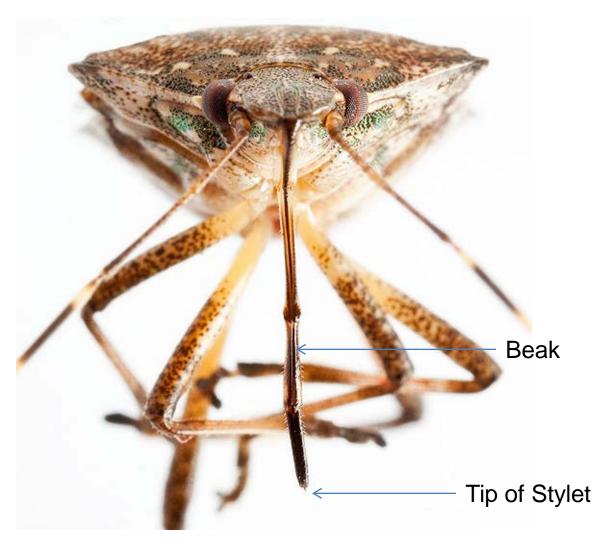
 Adults reared on mixed diets and single diets of ToH and Peach were heavier

Results: Nutrient contents of adults

Nutrient levels of adults varied among different diets

		FEMALES		
Diet treatments	N	Sugar (mg/mL)	Lipid (mg/mL)	Protein (mg/mL)
Apple	2	0.07 ± 0.04 *	$0.71 \pm 0.03^*$	4.32 ± 2.77*
Peach	15	$0.19 \pm 0.02a$	$0.85\pm0.04 bc$	$11.01 \pm 0.79a$
Catalpa	2	$0.08\pm0.03^{\boldsymbol{*}}$	$0.81\pm0.25^{\boldsymbol{*}}$	$7.85\pm4.76^{\boldsymbol{*}}$
ToH	7	$0.03\pm0.01b$	1.96 ± 0.54a	$11.22 \pm 0.61a$
Apple + ToH	15	0.18 ± 0.03a	1.50 ± 0.22ab	$11.47 \pm 0.75a$
3-host ^a	15	0.18 ± 0.02a	$0.83\pm0.06\text{c}$	$10.02 \pm 0.69a$
4-host ^b	15	0.19 ± 0.04a	$0.89 \pm 0.08 bc$	$9.84 \pm 0.71a$
One-way ANOVA		P = 0.031	P = 0.0002	P = 0.42

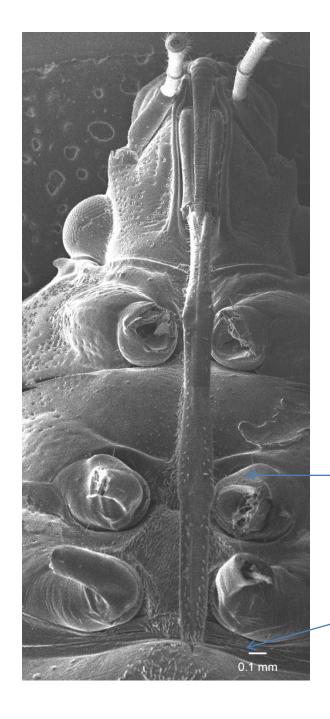
	_	MALES		
Diet treatments	N	Sugar (mg/mL)	Lipid (mg/mL)	Protein (mg/mL)
Apple	7	0.07 ± 0.01 bc	$0.51\pm0.03d$	10.16 ± 1.82a
Peach	15	$0.18 \pm 0.02a$	$0.77\pm0.07cd$	10.24 ± 0.65a
Catalpa	8	$0.03 \pm 0.01c$	$0.60 \pm 0.03 \text{cd}$	$3.11 \pm 0.40b$
ToH	14	$0.04\pm0.01c$	1.16 ± 0.12ab	9.11 ± 0.43a
Apple + ToH	15	0.12 ± 0.03 ab	1.29 ± 0.14a	9.88 ± 0.53a
3-host ^a	15	0.19 ± 0.01a	1.00 ± 0.07abc	8.59 ± 0.59a
4-host ^b	15	0.19 ± 0.04a	$0.89 \pm 0.08 bc$	9.84 ± 0.71a
One-way ANOVA		<i>P</i> < 0.0001	<i>P</i> < 0.0001	P < 0.0001


Summary

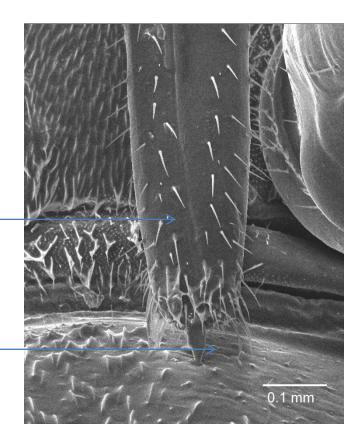
- Mixed diets proved to be optimal for nymphal survivorship and development
- Nymphs reared on mixed diets and ToH developed faster and they resulted into bigger and heavier adults
- ◆ Peach appeared to be the most suitable single host for BMSB development among the host plants tested
- Nutrient levels of adults that developed from nymphs reared on different diets were different across treatments
- Results suggest that H. halys optimizes diet by utilizing multiple hosts during its development

Summary of Work to Date

- Nutritional profile dynamics
 - Nik Wiman and Victoria Skillman (Oregon State), Jana Lee (USDA)
- Diet suitability
 - Angel Acebes and Chris Bergh (Virginia Tech), Tracy Leskey (USDA)
- Salivary gland characterization
 - Gary Felton and Michelle Peiffer (Penn State University)
- Gut microbe symbiosis
 - Chris Taylor, Galen Dively (University of Maryland)
- Colony rearing/ diapause
 - Dively lab (University of Maryland)


BMSB Mouthparts

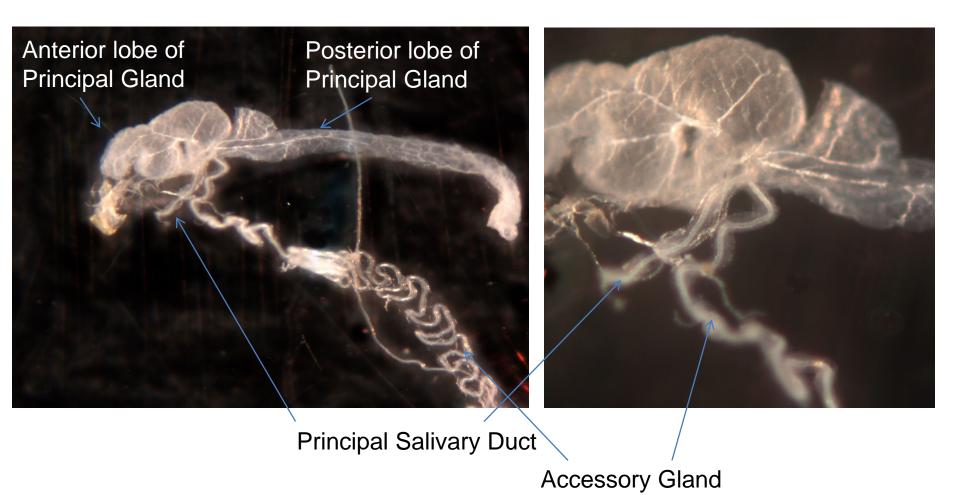
Stylet piercing through parafilm membrane

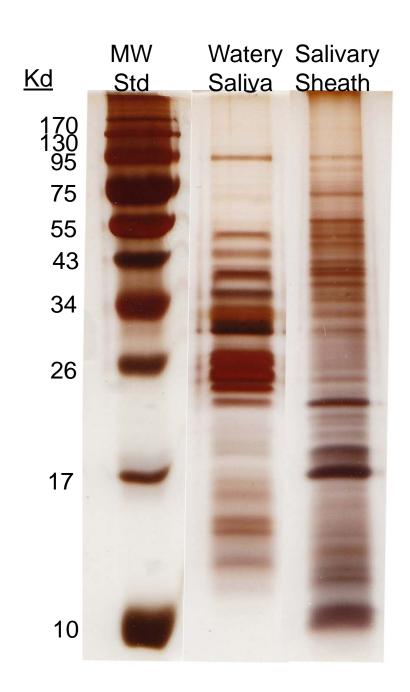


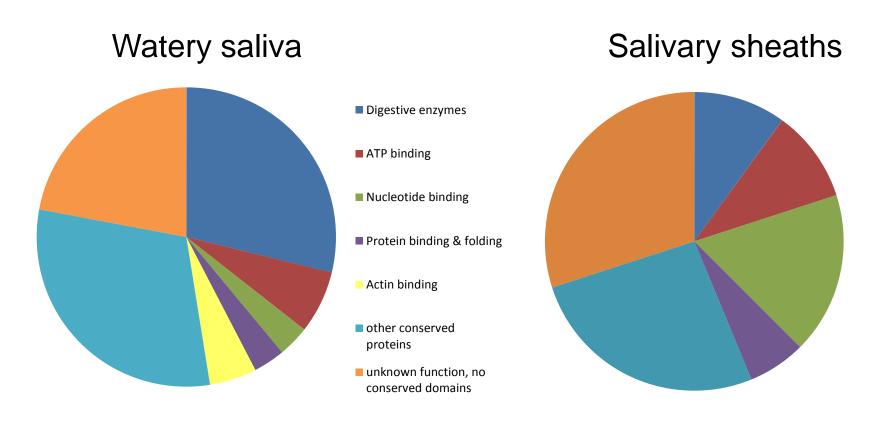
Scanning Electron Micrograph of BMSB mouthparts

Beak-

Stylet


BMSB Salivary Sheaths




BMSB Salivary Glands

SDS PAGE gel of BMSB watery saliva and salivary sheaths

Relative abundance of peptides identified by LC-MS/MS

Enzyme activities in BMSB watery saliva and salivary sheaths collected from tomatoes.

enzyme	watery saliva	salivary sheath
Amylase, μmole/min/mg	19 <u>+</u> 0.04	440 <u>+</u> 176
Peroxidase, mOD/min/mg	no activity	902 <u>+</u> 309
Polyphenol oxidase	no activity	no activity
Glucose oxidase	no activity	no activity

Amylase in BMSB saliva

- In cooperation with DOW Chemical, proteome data has been re-analyzed with the newly available BMSB genome(www.hgsc.bcm.edu/brown-marmorated-stink-bug-genome-project)
- We are focusing on 2 amylase sequences:
 - HHAL004834 is an α-amylase identified in both watery saliva and the salivary sheath
 - 2. HHAL001011 is an α-amylase identified in watery saliva only

- Currently we are using the SMARTer RACE technique to clone the full length genes and obtain complete sequence information
- The sequence information will be used to create small silencing RNA to suppress amylase in the saliva

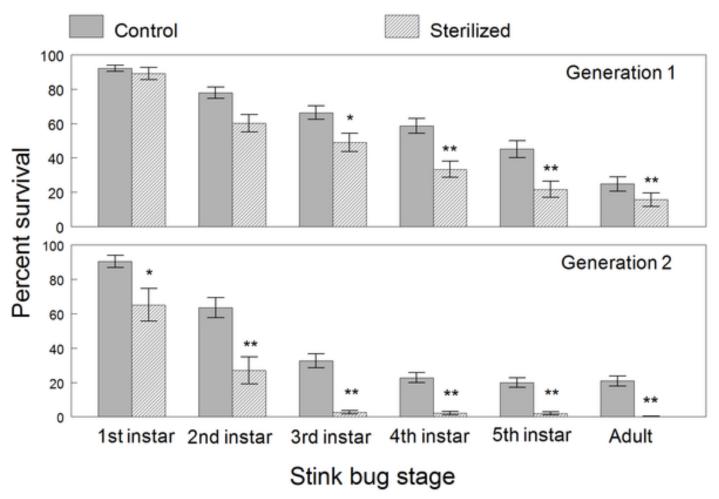
Summary of Work to Date

- Nutritional profile dynamics
 - Nik Wiman and Victoria Skillman (Oregon State), Jana Lee (USDA)
- Diet suitability
 - Angel Acebes and Chris Bergh (Virginia Tech), Tracy Leskey (USDA)
- Salivary gland characterization
 - Gary Felton and Michelle Peiffer (Penn State University)
- Gut microbe symbiosis
 - Chris Taylor, Galen Dively (University of Maryland)
- Colony rearing/ diapause
 - Dively lab (University of Maryland)

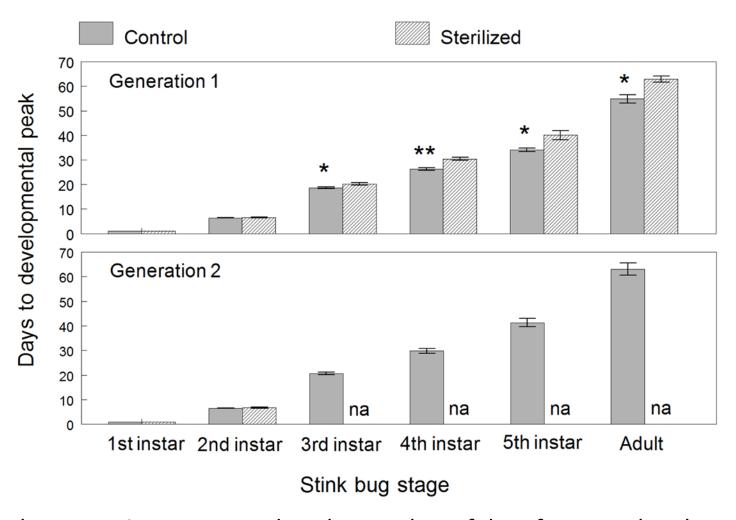
Introduction

 BMSB symbiont was identified as a species of Pantoea in 2013 (DeLay 2013, unpublished) and then described and given the proposed name Candidatus "Pantoea carbekii" in 2014 (Bansal, Michel and Sabree 2014)

Probing behavior ~1 hour after hatch



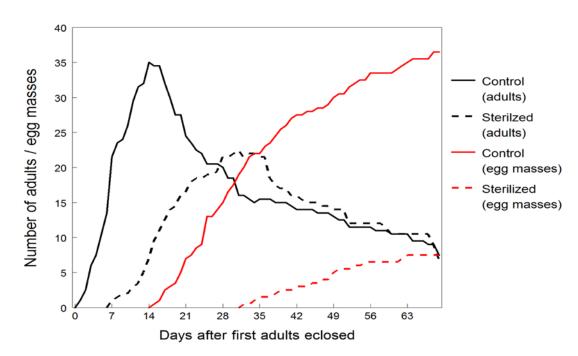
Sucking behavior, ~1 hour after hatch


Clustering behavior of 1st instars (M. Raupp)

Results: Survival

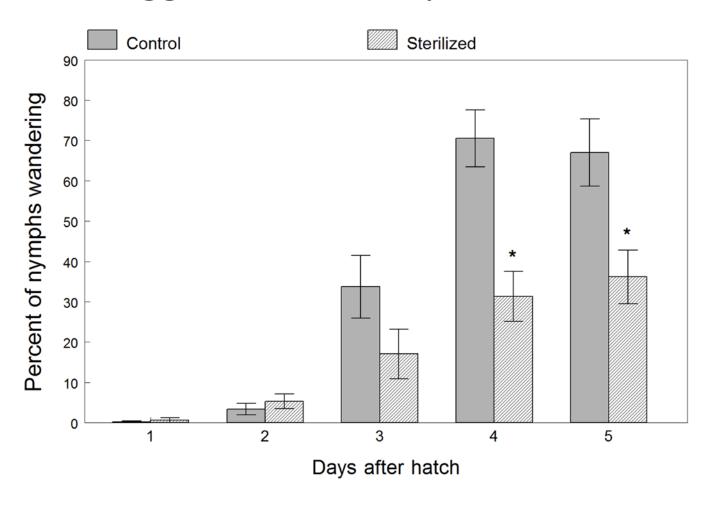
Percent survival from egg hatch to the peak density of each developmental stage of *H. halys* during two successive generations.

Results: Development



Development time expressed as the number of days from egg hatch required to reach peak density of each stage of *H. halys*.

Results: Fecundity


Parameter	Control	Sterile	df	F	P
Time to first egg mass (days)	15.5±1.5	25±0	-	-	-
Mean #egg masses/female	1.58±0.011	0.473±0.098	-	-	-
Mean # eggs/mass	27.77±0.01	17.13±2.05	1, 85.3	129.52	<.0001
Mean % hatch	94.43±1.30	64.95±9.46	1, 85	33.44	<.0001
Mean development time (days)	6.42±0.08	6.50±0.11	1, 83	0.18	0.6735

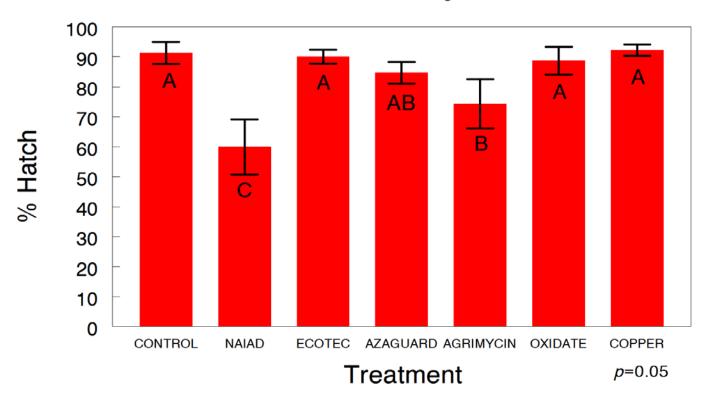
doi:10.1371/journal.pone.0090312.t004

Results: Behavior

 Significantly more nymphs wandering in control egg masses on days 4 and 5

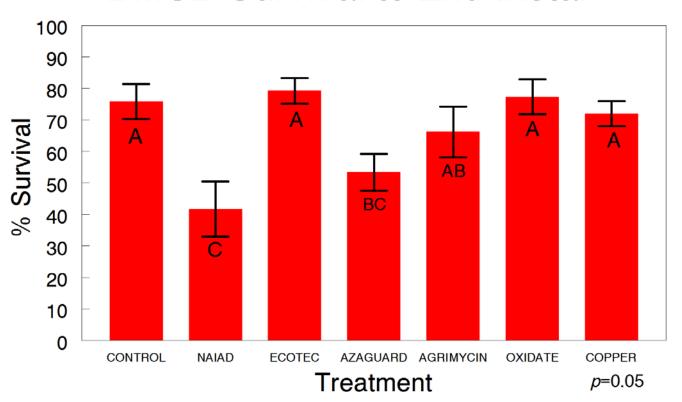
Objectives

- Can we develop management strategies that target the symbiont on the egg mass surface to indirectly manage the brown marmorated stink bug?
 - More specifically, can we use commercially available products to get adequate egg mass sterilization in the field?


Materials and Methods

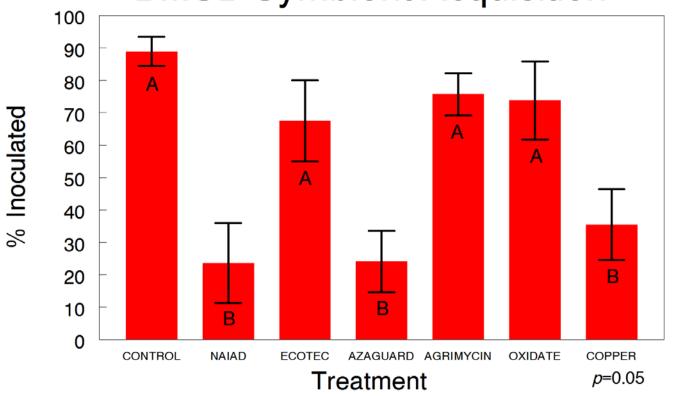
Preliminary screening of products to test for direct and indirect effects on nymphs

- 1 surfactant:
 - Naiad (Naiad Company, Inc.)
- 2 insecticides:
 - AzaGuard (BioSafe Systems LLC)
 - Ecotec (Brandt Consolidated, Inc.)
 - (Brandt Consolidated, Inc.)
- 3 antimicrobials:
 - OxiDate 2.0 (BioSafe Systems LLC
 - Agri-Mycin 17 (Nufarm Limikov, Fer Organic Use)
 - Liquid Copper Fungicide (Southern Agricultural Inserticides, Inc.)



Results: Hatch Rate BMSB Hatch Rate by Treatment

TREATMENT	# REPS
CONTROL	17
NAIAD	17
ECOTEC	17
AZAGUARD	17
AGRIMYCIN	17
OXIDATE	17
COPPER	17


Results: Survival BMSB Survival to 2nd Instar

TREATMENT	# REPS
CONTROL	17
NAIAD	17
ECOTEC	17
AZAGUARD	17
AGRIMYCIN	17
OXIDATE	17
COPPER	17

Results: Symbiont Acquisition

BMSB Symbiont Acquisition

TREATMENT	# REPS
CONTROL	9
NAIAD	8
ECOTEC	8
AZAGUARD	6
AGRIMYCIN	7
OXIDATE	8
COPPER	9

Summary of Work to Date

- Nutritional profile dynamics
 - Nik Wiman and Victoria Skillman (Oregon State), Jana Lee (USDA)
- Diet suitability
 - Angel Acebes and Chris Bergh (Virginia Tech), Tracy Leskey (USDA)
- Salivary gland characterization
 - Gary Felton and Michelle Peiffer (Penn State University)
- Gut microbe symbiosis
 - Chris Taylor, Galen Dively (University of Maryland)
- Colony rearing/ diapause
 - Dively lab (University of Maryland)

Colony Rearing and Diapause

- Colony rearing is important for many reasons:
 - Life history studies
 - Parasitoid rearing
 - Bioassays/ toxicity studies
 - RNAi/ genetic research

Colony Rearing and Diapause

- Summary of findings
 - Optimal temperature and humidity
 - Mixed diet of proteins and carbohydrates
 - Diapause considerations
 - Issues with microsporidian infection