Whole-farm Organic Management of BMSB and Endemic Pentatomids through Behavior-based Habitat Manipulation

A multi-state project funded by the Organic Research and Extension Initiative

Principal Investigators

Rutgers University

Dr. Anne L. Nielsen

Dr. George C. Hamilton

Michigan State University

Dr. Matthew Grieshop

North Carolina State University

Dr. Jim Walgenbach

Rodale Institute

Dr. Gladis Zinati

Jeff Moyer

The Ohio State University

Dr. Celeste Welty

University of Florida

Dr. Russell Mizell

Redbud Farm

Dr. Clarissa Mathews

University of Kentucky

Dr. Ricardo Bessin

University of Maryland

Dr. Galen Dively

Dr. Cerruti R. Hooks

University of Tennessee

Dr. Mary Rogers

Jenny Moore

USDA-ARS

Dr. Kim Hoelmer

Dr. Tracy Leskey

Virginia Tech

Dr. Doug Pfeiffer

West Virginia University

Dr. Jim Kotcon

Dr. Yong-Lak Park

eOrganic

Project Objectives

- 1. Habitat manipulation identify and evaluate trap crops
- 2. Identify whole-farm movement patterns and behaviors.
- 3. Natural enemy identity and impact in organic systems.
- 4. Evaluate organic management tactics
- 5. Develop extension materials.

Objective 1: Trap Crops

2013:

- Evaluated 4 potential organic trap crops: sunflower, millet, sorghum, and okra
- Tested across 4 states: MD, NJ, PA, and WV
- Sunflower and sorghum were the most attractive to BMSB
- Sunflower most attractive to native stink bugs
- Attraction varied throughout the season

Nielsen et al. Env. Entomol. accepted

2014 & 2015 Trap Crop

- Cash crop Aristotle Bell Peppers
- Trap crop Sunflower

Trap crop - Sorghum

Sampling area

Clarissa Mathews – Redbud Farms Brett Blaauw and Anne Nielsen - Rutgers

2014 Multi-State Trap Crop Study

Evaluate sunflower and sorghum trap for bell peppers,

8 states:

PI/Site	State	# Sites	# Reps
Nielsen/RAREC	NJ	1	4
Nielsen/Muth	NJ	1	1
Mathews/Redbud	WV	1	4
Dively/UMD	MD	1	4
Pfeiffer/VATech	VA	1	1
Moore/OCU	TN	1	3
Kotcon/WVU	WV	1	4
Welty/Stratford	ОН	1	1
Welty/Bridgeman	ОН	1	1
Walgenbach/Sizemore	NC	1	1
Zinati/Rodale	PA	1	4
Totals:	8	11	28

2014 Pepper Damage Assessment

All mature fruit harvested weekly (100 plants/plot), 7 weeks (Jul – Sept)

Rating Class 0 -Undamaged

Rating Class 1 -Minor Injury

Rating Class 2 -**Major Injury**

2014 Trap Crop Results

2015 NJ Trap Crop Pepper Damage

Blaauw and Nielsen - Rutgers

2015 NJ Stink Bug Densities on Pepper

Trap Crop Findings

- Sorghum was generally the most attractive trap crop tested for BMSB
 - Sunflower was more attractive earlier in the season with sorghum becoming more attractive in August
- Sunflower is attractive to natural enemies
- Colonization of cash crop was delayed
- Higher damage in peppers occurred under 'high' pressure
- Also attractive to native stink bugs

Obj 2: Whole Farm Movement

- Nymphal dispersal behavior
 - Capacity
 - Dispersal between host plants
- Whole-farm sampling
 - Tracking population hot spots
- Overwintering behavior
 - Trapping experiment
 - Citizen Science

Park, Mizell, Leskey, Nielsen, Hamilton, and Matthews

Nymphal Dispersal Capacity

- Nymphs have a strong walking capacity.
- Can disperse 10m in 3 hours
- Nymphs show strong response to the olfactory attractant and traverse large distances to reach source
- Nymphs select host plants
- Based off of phenology
 - Preference for fruiting bodies
 - Identified common odors correlated with attraction

16-Jun 30-Jun 14-Jul 28-Jul 11-Aug 25-Aug Sampling week

Doo-Hyung Lee and Tracy Leskey – USDA Blaauw and Nielsen - Rutgers

Whole-Farm Movement

- WVU Organic Farm, Morgantown WV (77 acres)
- Redbud Organic Farm, Inwood WV (11 acres)
- Muth Family Farm,
 Williamstown NJ (108 acres)

Jake Goldner and Yong-Lak Park - WVU

Traps RCBlocked Around Silo Cardinal Directions $n = 5 \times 4$ 2 Souths = 2 silos

Traps Blocked Around Silo BMSB Counts in 2014, Stat. NS

			Direction			
Color/	North	East	West	South (E	South (W)	Totals
White	93	65	68	43	258	527
Black	51	162	66	66	374	719
Yellow	24	44	31	39	215	353
Silver	125	130	103	8	142	508
Totals	193	301	208	156	989	1846

Great Stink Bug Count

- Crowd-sourcing data collection from volunteers
 - 2013: 162 datasets
 - 2014: 134 datasets
- September 15 October 15
- Rural or rural-forest landscapes had highest counts

Torri Hancock and Tracy Leskey - USDA

Objective 3: Natural Enemies

- 8 states observed fate of sentinel BMSB eggs
 - Two sites per state
 - Two week intervals from June through August
- Selected egg masses under video surveillance
- Laboratory trials
 - Identify stage-specific predation
 - Identify type of damage caused
- Gut content analysis
- Supporting natural enemy populations

Nielsen, Pote, Park, Pfeiffer, Hooks, Hoelmer, Bessin, Walgenbach, Welty, Rogers, and Grieshop

Who Are the Predators?

- Activity is largely at night
- Orthopterans caused high predation and spent a lot of time on the egg masses
- In cages, damsel bugs, wheel bugs, *Orius* sp. cause high predation of multiple life stages
- Minimal predation in the field by lady beetles

Insectary Plantings

- Identify natural enemies and impact
 - Cup plant, Silphium perfoliatum
 - Golden Alexanders, Zizea aurea
 - Horsemint, Monarda punctata
 - Sand coreopsis, Coreopsis lanceolata
 - Partridge pea, Chamaecrista fasciculata
- Determine biological control with partridge pea companion plantings in corn

Brett Blaauw – Rutgers Cerruti Hooks and Lauren Hunt - UMD

Wildflowers to Support Natural Enemies of BMSB

- Flowers support higher numbers of natural enemies
 - No difference in chewing predation of egg masses
 - Higher sucking predation
 - Most egg removal likely due to opportunistic orthopterans

Target Pest Control

Mean % parasitism of stink bug egg masses

Partridge Pea

Corn

Corn Ear Damage

Mean ear damage by stink bugs (kernels/ear)

Biological Control Summary

- Egg mass predation is higher in organic systems than conventional
- Most predators are generalists or opportunists
 - Sucking predators, orthopterans
- Can be increased through habitat manipulation
 - Until *T. japaonicus* is widespread, focus should be on plants that increase predator community
 - Horsemint (Monarda sp) and Coreopsis
 - Insecticides like Entrust decrease NE populations
- Parasitism is increasing

Objective 4: Evaluate Barrier Fabrics for BMSB and Endemic Stink Bug Management

- Investigated efficacy of barrier fabrics
- **Treatments:**
 - Fine mesh
 - 1/8" mesh
 - 1/6" mesh
 - No screen
- Scouted pepper plants weekly for:
 - BMSB and native stink bugs
 - Natural enemies
- Peppers were harvested and assessed for damage
 - TN (high pressure)
 - KY (low pressure)

Rogers, Moore, and Bessin

Percentage Stink Bug Damage to Peppers in Screened and Unscreened Plots

Is Organic Management Feasible?

- Yes, under moderate pressure!
- Understand hot spots on the farm
 - Key early season host plants
 - Crops that are preferred hosts by all life stages
- Manipulate the habitat surrounding these areas
 - Support natural enemies
 - Trap crop using sunflower and sorghum
 - Re-design trap crop layout
- Under intense BMSB pressure the finest mesh netting provides protection from stink bug injury
- Remove overwintering populations on-farm

For more information, please visit our project website:

http://eorganic.info/brown-marmorated-stink-bug-organic

2014 Pepper Yields

Biological Control: Stink Bug Eggs

C. Matthews and R. Morrison

Spatial Analysis: SADIE

- Spatial Analysis by Distance IndicEs (Perry et al. 1999).
- Calculates effort to make all values uniform
- Yields aggregation index (I_a)
 - $-I_a < 1 \rightarrow Uniform$
 - $-I_a > 1 \rightarrow \text{Aggregated}$
 - $-I_a = 1 \rightarrow \text{Random}$
- Associated P-value for I_a

Host Attractiveness may be Dependent on **Plant Phenology**

Beneficial insects on yellow sticky cards in screened and unscreened plots of peppers

FLORIDA

Sentinel Native Brown (*Euchistus servus*) and Green (*Acrosternum hilare*) stink bug vs BMSB egg predation and parasitism

BMSB in screened and unscreened plots of peppers, Tennessee 2013 and 2014

Percentage of marketable fruit from screened and unscreened plots, 2013 and 2014 combined

Percentage

